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Abstract. It has been realised recently that charge symmetry of the nucleon-nucleon interaction leads
to a certain relation between Asymptotic Normalization Coefficients (ANCs) in mirror-conjugated one-
nucleon overlap integrals. This relation can be approximated by a simple analytical formula that involves
mirror neutron and proton separation energies, the core charge and the range of the strong nucleon-core
interaction. We perform detailed microscopic multi-channel cluster model calculations and compare their
predictions to the simple analytical formula as well as to calculations within a single-particle model in
which mirror symmetry in potential wells and spectroscopic factors are assumed. The validity of the latter
assumptions is verified on the basis of microscopic cluster model calculations. For mirror pairs in which
one of the states is above the proton decay threshold, a link exists between the proton partial width and
the ANC of the mirror neutron. This link is given by an approximate analytical formula similar to that for
a bound-bound mirror pair. We compare predictions of this formula to the results of microscopic cluster
model calculations. Mirror symmetry in ANCs can be used to predict cross sections for proton capture at
stellar energies using neutron ANCs measured with stable or “less radioactive” beams.

PACS. 21.60.Gx Cluster models – 21.10.Jx Spectroscopic factors – 27.20.+n 6 ≤ A ≤ 19 – 27.30.+t
20 ≤ A ≤ 38

1 Introduction

Over the last 15 years, the nuclear physics community
has shown a growing interest in Asymptotic Normalization
Coefficients (ANCs). The study of these coefficients, both
theoretically and experimentally, is mostly motivated by
their application to nuclear astrophysics.

The one-nucleon ANC determines the magnitude of
the large distance behaviour of the overlap integral be-
tween the bound state wave functions of nuclei A and
A−1. Such overlaps enter the amplitude for non-resonant
nucleon capture reactions. If the capture occurs outside
the nuclear interior, as often happens at very low stel-
lar energies, then the overall normalization of its cross
sections as well as of the astrophysical S-factors, is de-
termined by the squared ANC [1]. Since the same ANCs
play a crucial role in other peripheral processes such as
transfer reactions, they can be measured in laboratories
and used to predict non-resonant capture processes at low
stellar energies [1].

a e-mail: n.timofeyuk@surrey.ac.uk

It has been suggested recently in ref. [2] that the ANCs
of two mirror overlap integrals should be related if the
charge symmetry of nucleon-nucleon (NN) interactions
is valid. It has been shown there that mirror ANCs can
be linked by an approximate analytical expression which
contains only nucleon separation energies, charges of the
product nuclei and the range of the strong interaction be-
tween the last nucleon and the core. This link can be used
to predict cross sections for non-resonant proton capture if
mirror neutron ANCs are known. The latter can be deter-
mined using direct reactions in experiments with stable
beams. Such experiments are less difficult and more ac-
curate than ones involving radioactive beams which are
necessary to determine the proton ANCs.

According to ref. [2], if one of the mirror nuclear states
is a low-lying narrow proton resonance, and its mirror ana-
log is particle-stable, then a link should exist between the
width of the proton decaying state and the neutron ANC
of its mirror analog. This link is given by an approximate
analytical formula which is similar to that for the case of
bound mirror pairs.

A proper understanding of the link between the width
of a proton resonance and the neutron ANC of its mirror
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analog can be important for predicting the resonant pro-
ton capture rates for a particular class of resonant reac-
tions at stellar energies. This class includes reactions that
proceed via very narrow isolated states for which the pro-
ton width Γp is either comparable to or much less than its
γ-decay width Γγ . Such resonances can be found in the
neutron-deficient region of the sd and pf shells (for ex-
ample, some levels in 25Si, 27P, 33Ar, 36K and 43,46V) and
their study is important for understanding nucleosynthe-
sis in the rp process. For the resonances mentioned above
Γp can be less than 1 eV. Direct measurements of such
tiny widths using proton elastic scattering are impossible.
Proton transfer reactions can be used instead. They pro-
vide spectroscopic factors which are combined with the
single-particle widths to get the necessary partial proton
widths. However, uncertainties in Γp extracted through
theoretical analysis of these reactions (for example, using
the distorted-wave formalism) are about 50% [3]. These
uncertainties arise due to problems in the theoretical anal-
ysis of stripping reactions to the continuum and the deter-
mination of the single-particle proton widths. The deter-
mination of proton widths based on the link to ANCs of
their mirror particle-stable analogs can provide better ac-
curacy since it avoids the uncertainties mentioned above.

In the present paper, we compare three different calcu-
lations of the ratio between mirror ANCs of bound mirror
pairs and two calculations for the ratio between the pro-
ton widths and neutron ANCs of their mirror analogs. The
first calculation uses the analytical formulae of ref. [2]. The
second one (applied here only for bound mirror pairs) is
based on the idea of mirror symmetry of single-particle
potential wells and of spectroscopic factors. The third
method uses the microscopic calculations within a multi-
channel cluster model. These three approaches are de-
scribed in sect. 2, 3 and 4. The comparison between them
is given in sect. 5 and 6 and discussed in sect. 7.

2 Analytical formula

2.1 Bound mirror pairs

The ANC Clj for the one-nucleon virtual decay A→ (A−
1) +N is defined via the tail of the overlap integral Ilj(r)

Ilj(r) =
〈

χ 1

2
τ

[[

Yl(r̂)⊗ χ 1

2

]

j
⊗ ΨJA−1

]

JA

|ΨJA

〉

(1)

between the many-body wave functions ΨJA and ΨJA−1

of nuclei A and A − 1. Here l is the orbital momentum,
j is the total relative angular momentum between A − 1
and N , τ is the isospin projection and χ 1

2
τ is the isospin

wave function of nucleon N , and r is the distance between
N and the center-of-mass of A − 1. Asymptotically, this
overlap behaves as

√
AIlj(r) ≈ Clj

W
−η,l+1/2(2κr)

r
, r →∞, (2)

where κ = (2µε/h̄2)1/2, ε is the one-nucleon separation
energy, η = ZA−1ZNe

2µ/h̄2κ, µ is the reduced mass for
the (A− 1)+N system and W is the Whittaker function.

For the 〈A−1

N−1
Z ⊗ n|ANZ〉 overlap, where the separated

nucleon is a neutron, the ANC Clj can be represented by
the matrix element [4,5,6]:

Clj = −i−l 2µ
√
A

h̄2
×

〈

χ 1

2
τ

[[

jl(iκr)Yl(r̂)⊗ χ 1

2

]

j
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‖V̂ nucl‖ΨJA

〉

, (3)

where jl(iκr) is the spherical Bessel function,

V̂ nucl =

A−1
∑

i=1

VNN (|ri − rA|) , (4)

VNN is the strong two-body NN potential and ri is the
radius-vector of the i-th nucleon.

For the mirror overlap 〈A−1

Z−1
N ⊗p|AZN〉, where the sep-

arated nucleon is a proton, the expression for the ANC
Clj can be obtained by considering the inhomogeneous
coupled system of differential equations
(

εp + T̂ rel
l +

∑

n′l′j′

V coul
nlj,n′l′j′(r)

)

In′l′j′(r)

= −
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2

]

j
⊗ ΨJA−1

]

JA

‖V̂ nucl‖ΨJA

〉

, (5)

which is easily obtained from the simultaneous considera-
tion of the Schrödinger equations for nuclei A and A − 1
and expanding the wave function of A into complete set

of eigenfunctions Ψ
JA−1

n of the Hamiltonian HA−1 for the
core A−1. In eq. (5) V coul

nlj,n′l′j′(r) is the matrix element of
the Coulomb interaction between the last proton and the
protons of the core A− 1:

V coul
nlj,n′l′j′(r) =
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]
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Here n denotes an excited state of A− 1, ei is the charge
of i-th nucleon and riA = |ri − rA|.

If non-diagonal Coulomb couplings in eq. (5) can be
neglected and the diagonal Coulomb potential is replaced
by a function V coul

mod (r) which is a constant V coul
mod (r) =

εn−εp inside the Coulomb radius, and (Z−1)e2/r outside
it, then the proton ANC is given by the same expression
as eq. (3) but in which the Bessel function is replaced
by the solution ϕmod

l (r) of the Schrödinger equation with
the potential V coul

mod (r). Since the main contribution to the
ANC comes from internal nuclear region, we need to know
ϕmod
l (r) only at r < RN (RN is the radius of the nuclear

interior). In this region it is given by the expression [2]

ϕmod
l (r) =

Fl(iκpRN )

κpRN jl(iκnRN )
jl(iκnr), r ≤ RN , (7)

in which iκp and iκn are determined by the proton and
neutron separation energies εp and εn, and Fl is the regular
Coulomb wave function at imaginary momentum iκ.
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If the charge symmetry of NN interactions is valid,
then the wave functions of the mirror pairs A

ZN - A
NZ and

A−1

N−1
Z - A−1

Z−1
N should be approximately the same in the

nuclear interior and the ratio

R =

(

Cp

Cn

)2

, (8)

where Cp and Cn are proton and neutron ANCs for mirror
nucleon decays, should be approximated by the square of
the normalization coefficient in function ϕmod

l (r):

R ≈ R0 ≡
∣

∣

∣

∣

Fl(iκpRN )

κpRN jl(iκnRN )

∣

∣

∣

∣

2

. (9)

2.2 Bound-unbound mirror pairs

It has been shown in ref. [7] that the partial width Γp of
a narrow proton resonance is related to the single-particle
ANC bp of the Gamow function describing the proton mo-
tion in the resonance state times the spectroscopic factor

Sp: Γp = (h̄2κp/µ)Spb
2
p. One can show that S

1/2
l bp can be

represented by an integral containing the wave functions
of nuclei A and A − 1 and the interaction potential be-
tween the proton and A− 1 in the same way as for bound
nuclear states. Assuming that the Gamow function in the
internal region of the resonance is the same as the internal
wave function of its mirror stable analog and repeating the
reasoning of the previous section, we get for

RΓ = Γp/C
2
n, (10)

an approximate expression [2]

RΓ ≈ Rres
0 =

h̄2κp
µ

∣

∣

∣

∣

Fl(κpRN )

κpRN jl(iκnRN )

∣

∣

∣

∣

2

. (11)

In eq. (10) Cn is the neutron ANC of the proton mirror
bound analog. We would like to stress that the width Γp

entering eq. (11) is a residue in the S-matrix pole at the
energy of the proton resonance and not the width for the
cross sections of resonant reactions. However, for narrow
resonances the difference between these two definitions of
the width is small.

3 Single-particle model

According to the analytical formula, the ratio of mirror
ANCs should depend only on nucleon separation ener-
gies and should be independent of the NN potentials. We
checked this property for the case of the two-body model.
We considered a family of Woods-Saxon potentials that
give some chosen neutron separation energy εn, and some
chosen proton separation energy εp when the Coulomb
potential of a uniformly charged sphere was added. This
was achieved by simultaneously varying both the depth
and the radius of the Woods-Saxon potential at fixed dif-
fusenesses. The actual numerical values of εn and εp were

8B 12N 15O(3/2
+) 16O 17Fgs

17F(1/2
+) 23Al 27P

0

50

100

150

200

pe
r c

en
ts

changes in C2

changes in (Cp/Cn)
2

with potential well choice

Fig. 1. Changes in ANCs squared and in ratio of proton to
neutron ANC squared (Cp/Cn)

2 with choice of two-body nu-
clear potential well for a range of nuclei.

8B 12N 15O(3/2
+) 16O 17Fgs

17F(1/2
+) 23Al 27P

1e−01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05
(C

p/C
n)

2

two−body model
analytical formula

Fig. 2. Ratio of proton to neutron ANC squared (Cp/Cn)
2

calculated in the two-body potential model and using the an-
alytical formula (9) for a range of nuclei.

the same as neutron and proton separation energies in the

mirror pairs 8Li-8B, 12B-12N, 15N( 3

2

+
)-15O( 3

2

+
), 17Og.s.-

17Fg.s.,
17O( 1

2

+
)-17F( 1

2

+
), 23Ne-23Al, 27Mg-27P and in the

nucleus 16O.

For different potentials from the same family, the neu-
tron and proton ANC values changed significantly but in
such a way that their ratio was roughly the same. To illus-
trate this, we have presented in fig. 1 the changes in ANCs
squared C2 as thick vertical dashed lines and the changes
in (Cp/Cn)

2 as vertical solid lines. While C2 changes by
25 to 155%, the changes in (Cp/Cn)

2 do not exceed 3%.

The weak sensitivity of the ratio of mirror ANCs to the
nuclear potentials suggests an alternative empirical way to
determine this ratio. If we assume that mirror neutron and
proton single-particle wells are exactly the same and that
the spectroscopic factors Sp and Sn are equal for mirror
pairs, then the ratio R can be approximated by the single-
particle ratio Rs.p.

R ≈ Rs.p. ≡ (bc.s.p /bc.s.n )2, (12)
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where the single-particle ANCs bc.s.p and bc.s.n are calcu-
lated numerically for exactly the same nuclear potential
well. Unlike R0, Rs.p. takes into account the differences
in internal wave functions of mirror nuclei due to the
Coulomb interaction.

In fig. 2 we compare the ratio Rs.p. with the analytical
estimate R0. One can see that R0 reproduces the general
trend in Rs.p. well. The difference between them is about
2–6% for relatively large proton separation energies but

can reach 10–20% for 8B, 17F( 1

2

+
) and 15O( 3

2

+
) where

this energy becomes very small.

4 Microscopic cluster model

To understand the validity of simple approxima-
tions (9), (11) and (12), their predictions should be
compared to the numerical calculations using theoretical
structure models. One of the models, the best adapted for
ANC calculations, is a microscopic cluster model.

The multi-channel cluster wave function for a nucleus
A consisting of a core A − 1 and a nucleon N can be
represented as follows:

ΨJAMA =
∑

lSJA−1ω

A[χ 1

2
τ [g

JA−1

ωlS (r)⊗ [ΨJA−1

ω ⊗χ 1

2

]S ]JAMA
],

(13)

where A = A−
1

2 (1 −∑A−1

i=1
Pi,A) and the operator Pi,A

permutes spatial and spin-isospin coordinates of the i-

th and A-th nucleons. In this work, Ψ
JA−1

ω is a wave
function of nucleus A − 1 with the angular momentum
JA−1 defined either in the translation-invariant harmonic-
oscillator shell model, or in a multicluster model. The
quantum number ω labels states with the same angular
momentum JA−1 and S is the channel spin. Transition
from the lS coupling scheme to the lj coupling scheme
can be done using standard techniques.

The relative wave function g
JA−1

ωlS (r) = g
JA−1

ωlS (r)Ylm(r̂)
is determined using the R-matrix method. In this method,
as explained in detail in ref. [8], the Bloch-Shrödinger
equation is solved for the wave function ΨJAMA , which
allows the correct asymptotic behaviour for the relative

wave function g
JA−1

ωlS to be obtained. For the states that
are stable with respect to particle decay this behaviour is

g
JA−1

ωlS (r) ≈ C
JA−1

ωlS

W
−η,l+1/2(2κr)

r
(14)

and for particle-unstable states

g
JA−1

ωlS (r) ≈ Aω
δωνIν(κνr)− U

JA−1

ων Oν(κνr)

κωv
1/2
ν

. (15)

Here, Iν and Oν are the ingoing and outgoing Coulomb
functions, vν is the velocity in the channel ν and U is the
collision matrix. The resonance width is determined by as-
suming a Breit-Wigner shape for the collision matrix near
an isolated resonance. This width is the residue at the
pole of the R-matrix and its ratio to the ANC squared of
the mirror neutron can be compared to the approxima-
tion (11).
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Fig. 3. Ratio RMCM/R0 and RMCM/Rs.p.. For the
13C-13N

mirror pair the circles represent the calculations within the
four-cluster model and the downward triangles represent the
calculations in the two-cluster model for various nuclei.

5 Bound mirror pairs

In this section we calculate mirror one-body overlap inte-
grals for several 0p and sd shell nuclei within the multi-
channel cluster model and explore their properties such
as ANCs, spectroscopic factors and single-particle ANCs.
The residual nucleus is always taken in its ground state.
We use the best adapted effective NN interactions for
such calculations, namely, the Volkov potential V2 [9] and
the Minnesota (MN) potential [10]. The two-body spin-
orbit force [11] and the Coulomb interaction are also in-
cluded. More details of the calculations can be found in
ref. [12] and references therein.

Each of V2 and MN have one adjustable parameter
that gives the strength of the odd NN potentials V11 and
V33. This parameter is usually fitted to reproduce the ex-
perimental separation energy for neutron or proton. Such
a procedure is crucial for theoretical calculations of ANCs.
However, in most cases the same choice of this parame-
ter for mirror states does not reproduce both neutron and
proton separation energies. Therefore, we use slightly dif-
ferent interactions in mirror nuclei to reproduce simulta-
neously the separations energies for neutrons and protons.
This simulates charge symmetry breaking of the effec-
tive NN interactions that should be a consequence of the
charge symmetry breaking in realistic NN interactions.

5.1 Mirror symmetry in ANCs

In this section we compare the ratio RMCM of mirror
ANCs squared obtained in the microscopic cluster model
with two different approximations, R0 and Rs.p.. The ra-
tios RMCM calculated with two different NN potentials
differed by no more than 4%. So, we use for RMCM the
result averaged over two potentials V2 and MN. The cal-
culated ratio RMCM/R0 and RMCM/Rs.p. are shown in
fig. 3 for several mirror pairs. The error bars in this figure
are due to averaging RMCM over the two NN potentials
and because of uncertainties inR0 due to the choice of RN
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and the uncertainties in Rs.p. due to the residual depen-
dence on the nucleon-core potential. Where two different
values of the channel spin are possible, we take the sum
of the squared ANCs in these channels for each of mirror
nuclei and construct their ratio. In nuclear astrophysics
the sum of the squared ANCs is often needed rather than
their individual values in channels with different spin.

For the mirror pair 13C-13N, two models were used: a
two-cluster model (downward triangles) and a four clus-
ter model (circles). The slightly different ratios RMCM

obtained in these models are due to the different amount
of charge symmetry breaking required in each of these
models.

According to fig. 3, the deviation of RMCM from the
analytical value R0 does not exceed 7% for most cases
except for the two s-wave mirror states with one node
15N( 3

2

+
)-15O( 3

2

+
) and 17O( 1

2

+
)-17F( 1

2

+
) and for the mir-

ror pair 23Ne-23Al. The deviations in these cases are 10%,
13% and 12% respectively. In most casesRMCM is smaller
than R0 but larger than Rs.p.. The deviation of Rs.p. from
RMCM is not more than 6% except for the 23Ne-23Al and
27Mg-27P mirror pairs where these deviations are 10% and
12%, respectively.

We have found that the average Rav of two differ-
ent approximations R0 and Rg.s. is in reasonably good
agreement withRMCM . For all cases except 23Ne-23Al the
difference between Rav and RMCM does not exceed 6%.
Therefore, in the absence of detailed microscopic calcula-
tions Rav can be a good choice for using mirror symmetry
in ANCs to predict proton ANCs from mirror neutron ones
and vice versa.

The 10–12% difference between R0 (or Rs.p.) and
RMCM for the mirror pair 23Ne-23Al arises due to strong
core excitation effects. This deviation occurs in multichan-
nel calculations which include many excited states in the
22Ne and 22Mg cores. When all the core excitations are
removed, the calculated value of RMCM decreases and
agrees with Rs.p. and R0 within 2% [12].

5.2 Mirror symmetry in spectroscopic factors

The spectroscopic factor Slj is defined as

Slj = A

∫

∞

0

dr r2(Ilj(r))
2, (16)

and we obtain them by numerical integration of the over-
lap integrals squared, calculated in the MCM. We use
slightly different odd NN interactions in each mirror state
in order to reproduce the experimental separation ener-
gies both for neutrons and protons. However, these inter-
actions do not differ much and, therefore, the difference
in mirror wave functions in the nuclear interior should
arise because of the charge symmetry breaking due to the
Coulomb interactions. Since the latter are smaller then
strong interactions and because the main contribution to
the spectroscopic factor comes from nuclear interior, one
expects that the spectroscopic factors in mirror states to
be almost equal.

8B 12N 13N 15Ogs
15O(3/2

+) 17Fgs�
17F(1/2

+)�23Al���27P�
0.9

1.0

1.1

1.2

1.3

S
p /

S
n

V2  j=1/2
MN  j=1/2
V2  j=3/2
MN  j=3/2
V2  j=5/2
MN  j=5/2
V2  S1/2+S3/2

MN  S1/2+S3/2

 

Fig. 4. Ratio of proton to neutron spectroscopic factors for
various nuclei.

The ratio Sp/Sn, where Sp is the proton spectroscopic
factor and Sn is the spectroscopic factors for its mirror
analog, is shown in fig. 4 both for the V2 and the MN po-
tentials. In this figure, the results for 13N-13C are shown
only for the four-cluster model. The two-cluster model pre-
dicts very similar values for Sp/Sn for this mirror pair.

One can see that for the mirror pairs 13N-13C and 17F-
17O with well developed single-particle structure, Sp/Sn
is very close to one. For most other cases the deviation of
Sp/Sn from one is no more than 4% for both the NN po-
tentials. The strongest deviation is obtained for the small
j = 1/2 components of the 〈8B|7Be〉 and 〈8Li|7Li〉 over-
lap integrals and it reaches about 20% for V2 and 11%
for MN potential, respectively. Such a sensitivity to the
NN potential for j = 1/2 is explained by the different
amounts of charge symmetry breaking required to repro-
duce the experimental separation energies in 8B and 8Li
with V2 and MN. Another strong deviation of Sp/Sn from
one occurs for the 27P-27Mg mirror pair where it reaches
8 to 9%. This deviation arises from core excitation effects.

5.3 Mirror symmetry in single-particle ANCs

The overlap integrals Ilj(r), divided by the square roots
of their spectroscopic factors Slj , are normalised functions
of only one degree of freedom. They play the same role as
single-particle wave functions generated by some effective
local single-particle potential. These functions are charac-

terised by the single-particle ANCs blj = CljS
−1/2
lj . Com-

parison between single-particle ANCs blj for mirror nuclei
may help to understand if mirror symmetry of the effective
local single-particle potential wells is valid.

In this section we compare the ratio Rb =
C2
pSn/(C

2
nSp) calculated in the microscopic cluster

model with charge symmetry breaking and the ratio Rs.p.

obtained using the same single-particle potential well
which also reproduces experimental separation energies. If
the charge symmetry of the local effective single-particle
potentials is valid, then the ratio Rb/Rs.p. should be
equal to one.
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Fig. 5. Ratio Rb/Rs.p. for various nuclei.

In fig. 5 we plot the ratio Rb/Rs.p.. The results of
microscopic calculations for Rb with two different NN
potentials are averaged. The error bars in this figure are
present due to this averaging and because of uncertainties
in Rs.p. due to the residual dependence on nucleon-core
potential.

For the mirror pairs of overlap integrals 〈8B|7Be〉-
〈8Li|7Li〉, 〈12N|11C〉-〈12B|11B〉, and 〈15O|14N〉-〈15N|14N〉
with l = 1, where two angular momenta j are possible,
the ratio Rb/Rs.p. is different in channels with j = 3/2
and j = 1/2. The deviation of Rb/Rs.p. from one for these
overlaps correlates with the size of their r.m.s. radii so
that the larger is the r.m.s radius, the smaller are the de-
viations. For the j = 3/2 overlaps 〈8B|7Be〉-〈8Li|7Li〉 and
〈12N|11C〉-〈12N|11C〉 〈r2〉1/2j=3/2 is larger than 〈r2〉1/2j=1/2 [12]

and the ratio Rb/Rs.p. deviates from one for j = 3/2 over-
laps more than in the j = 1/2 case. The situation for the
〈15O|14N〉-〈15N|14N〉mirror overlaps is opposite, the r.m.s.
radius for j = 1/2 is smaller than that for j = 3/2 and Rb

deviates from Rs.p. more for the latter case.

For the 〈13N|12C〉-〈13C|12C〉 pair of mirror overlaps,
we have performed the calculations both in four- and two-
cluster models. In the first case, the mirror symmetry of
local effective potential wells is valid. In the second case,
the mirror local effective potentials are not the same due
to large charge symmetry breaking required to reproduce
the experimental separation energies.

The ratio Rb/Rs.p. is equal to one within the theoret-
ical uncertainties only for 17Fg.s. and

27P. It is interest-
ing that significant deviation between Rb and Rs.p. can

be seen for the single-particle nuclear state 17F( 1

2

+
), in

which the mirror symmetry of the mean field is intuitively
expected. We believe that the reason for such a deviation

is the fact that in 17O( 1

2

+
) the valence 1s neutron pene-

trates inside the core more easily than the mirror proton
thus more strongly disturbing the mean field. Also a very
strong deviation occurs for 23Al which should originate
from the strong deformation of the 22Mg core.

8B 12N 12N 12N 12N 13N 13N 13N 23Al 27P
10−12

10−10

10−8

10−6

10−4

10−2

100

Γ p/C
n2  

analytical formula
MCM calculations with V2

1+       2+      0+      2−      1−     1/2
+     3/2

−    5/2
+     1/2

+     3/2
+

Fig. 6. Ratio of the proton width to the ANC squared of
the mirror neutron calculated (given in the units of h̄c) with
exactly the same NN interactions in mirror nuclei as compared
to the predictions of the analytical formula (11).

6 Bound-unbound mirror pairs

In this section we consider excited mirror states, that lie
above proton emission thresholds on the proton-rich side
and are bound on the neutron-rich side, for the same 0p
and sd shell mirror pairs as in the previous section.

First of all we perform the microscopic cluster model
calculations with exactly the same NN potentials for each
nucleus of a mirror pair, thus imposing charge symmetry
of the NN interactions. The adjustable parameters of the
NN potentials are chosen to reproduce the experimen-
tal energies of proton resonances. We calculate the widths
Γp for these resonances, the ANCs squared C2

n for mirror
neutrons and plot their ratio RMCM

Γ in fig. 6 for the V2
potential. We compare this ratio to the prediction Rres

0 of
the analytical formula (11). As seen in fig. 6, the analyt-
ical formula describes very well the general trend in the
RMCM

Γ behaviour. The same is true for the MN potential.
To see the differences between RMCM

Γ and Rres
0 we

have plotted in fig. 7 the ratio Rres
0 /RMCM

Γ . We calcu-
lated this ratio both in the single-channel (no core ex-
citations) and the multi-channel (including several core
excitations) cluster model for two different NN poten-
tials, V2 and MN. The results are plotted in fig. 7. One
can see from this figure that for 0p shell nuclei the results
obtained with and without taking core excitations into
account differ by not more than 6%, except for 12N(0+),
where this difference is about 10%. Core excitations be-
come more important for nuclei in the middle of the sd
shell. For 23Ne-23Al, their influence on RMCM

Γ is about

12–16%. A similar effect is seen for 27Mg( 3

2

+
)-27P( 3

2

+
) in

the calculations with the V2 potential but for MN this
influence is much stronger, about 45%. This happens be-
cause with the MN potential the d-wave 26Si(0+) + p con-

figuration in 27P( 3

2

+
) becomes three times weaker than



N.K. Timofeyuk et al.: Relation between proton and neutron asymptotic normalization coefficients . . . 275

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
R0

res/RMCM

12N(2−)   
12N(1−)   

13N(1/2
+)2c

13N(1/2
+)4c

23Al(1/2
+)

8B(1+)   
12N(2+)   
12N(0+)   

13N(3/2
−)2c

13N(3/2
−)4c

13N(5/2
+)2c

13N(5/2
+)4c

27P(3/2
+)

with core excitations   
no core excitations

s−wave resonances

p−wave resonances

d−wave resonances

a)

V2 potential

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
R0

res/RMCM

12N(2−)   
12N(1−)   

13N(1/2
+)2c

13N(1/2
+)4c

23Al(1/2
+)

8B(1+)   
12N(2+)   
12N(0+)   

13N(3/2
−)2c

13N(3/2
−)4c

13N(5/2
+)2c

13N(5/2
+)4c

27P(3/2
+)

with core excitations   
no core excitations

s−wave resonances

p−wave resonances

d−wave resonances

b)

MN potential

Fig. 7. Ratio between the predictions Rres
0 of the analytical formula (11) and those from the microscopic calculations RMCM

Γ

for the V2 (a) and MN (b) potentials with and without taking core excitations into account. Charge symmetry of the NN
interactions is assumed. Both four-cluster (4c) and two-cluster (2c) calculations for 13N are shown.
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Fig. 8. Ratio between the predictions Rres
0 of the analytical

formula (11) and the microscopic calculations RMCM
Γ for the

V2 and MN potentials. The NN potentials are slightly different
in mirror nuclei. Core excitations are included. For 13N, the
results of the four-cluster calculations are shown.

the s-wave 26Si(2+) + p configuration. In weak configura-
tions the effects of charge symmetry breaking due to the
Coulomb interaction are more noticeable. In the particular

case of 27Mg( 3

2

+
)-27P( 3

2

+
), the mirror symmetry breaking

in spectroscopic factors, obtained with MN potential, is
about 33%, while with V2 the d-wave 26Si(0+) + p config-

uration dominates and the mirror symmetry breaking for
spectroscopic factor of this configuration is only 4%. For
other nuclei, the effect of different choices of the NN in-
teraction is about 6 to 8%. The average deviation of Rres

0

from RMCM is about 10–12%.
Next, we perform multi-channel calculations in which

the experimental energies of proton resonance and neutron
separation energies are reproduced. This requires some
charge symmetry breaking in the NN interactions used.
The results of such calculations are presented in fig. 8.
The differences in the calculations with V2 and MN po-
tentials do not exceed 8% for all the cases considered here.
The largest difference between Rres

0 and RMCM
Γ occurs,

as expected, for the s-wave resonances 12N(2−), 12N(1−)

and 13N( 1

2

−

), the widths of which are not small. For the

narrow s-wave resonance 23Al, Rres
0 deviates from RMCM

Γ
by about 14%. Similar deviations, of 16-18%, occur for all

the p-wave resonances. For the d-wave resonances 13N( 5

2

+
)

and 27P( 3

2

+
) this deviation is noticeably smaller, 6% and

10% respectively.

7 Discussion and conclusions

In this paper we have performed calculations of ANCs for
mirror one-body overlap integrals within a multi-channel
microscopic cluster model. These calculations provide an
improved understanding of mirror symmetry in ANCs
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because the model used takes into account the differ-
ences in the internal structure of mirror nuclei due to
the Coulomb interaction and the effects that arise due
to core excitations, which were ignored in the derivation
of the analytical formula (9). Comparison of the results
obtained within the microscopic model with the predic-
tions of eq. (9) has confirmed the general trend in the
behaviour of ratio of mirror ANCs, given by this formula.
This trend is determined only by the separation energies
of mirror proton and neutron and the charges of the cores.
The difference between the microscopic calculations and
the analytical formula is usually less than 7%. However, it
may reach, 10 to 12% for the very weakly bound 1s nuclei
and for nuclei with strongly excited cores.

The microscopic calculations of the ratio of mirror
ANCs are also very close to those of the single-particle
model, where mirror symmetry in the single-particle po-
tential wells and in the spectroscopic factors is assumed.
The difference between such calculations is typically less
that 7% except for the sd shell nuclei 23Al and 27P with
strongly deformed cores. The average of the single-particle
estimate and the prediction of the analytical model is in
agreement with the microscopic calculations to within 6%,
except for 23Al. Therefore, this average value can be used
to predict unknown ANCs from known mirror ones when
the microscopic calculations are not available. As far as the
mirror symmetry of the single-particle model is concerned,
it is not always justified. Our microscopic calculations
have shown that spectroscopic factors in mirror states can
differ by up to 9% and that mirror symmetry in proton and
neutron potential wells is not always present, even for nu-
clear states with well-pronounced single-particle structure.

Mirror symmetry of ANCs can be used to predict cross
sections of proton capture at stellar energies using mirror
neutron ANCs. For example, the astrophysical S-factor
of the 7Be(p, γ)8B reaction can be calculated using the
ANCs for the overlap integral 〈8Li|7Li〉. The latter has
been measured recently in [13]. Using this experimental
value and the predictions for the ratio of the 8B proton
ANC to the 8Li neutron ANC from the microscopic cluster
calculations, we get S17(0) = 17.8± 1.7 eV · b for V2 and
18.2± 1.8 eV · b for the MN. These results agree well with
most measurements based on indirect methods.

The microscopic calculations for bound-unbound mir-
ror states have confirmed that the main trend in the be-
haviour of the ratio between the proton width and the
mirror neutron ANC squared is well reproduced by the
analytical formula (11). The difference between the pre-
dictions of this formula and the exact microscopic calcu-
lations is less than 20% for narrow proton resonances.

The mirror symmetry between the proton width and
the mirror neutron ANC can be used to predict unknown
widths of very narrow resonances.

It can also be used as a test of the accuracy for ex-
perimentally measured ANCs. For example, for the neu-
tron ANC of 8Li(1+) measured in [13] and the proton
width of 8B(1+) from [14] we get Rexp = (2.29 ± 0.28) ×
10−3 h̄c. This is significantly larger than the predictions
RMCM

Γ = (1.73 ± 0.03) × 10−3 h̄c of the microscopic
model. The proton width of 8B(1+) has recently been
remeasured in 7Be + p scattering [15], which leads to
Rexp = (1.92± 0.23)× 10−3 h̄c. The remaining difference
between Rexp and RMCM

Γ requires the verification of the
accuracy of the determination of the 8Li(1+) ANC.

This work has been supported by the UK EPSRC via grant
GR/T28577.
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